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Abstract

The prominent morphometric alterations of Alzheimer's disease (AD) occur both in grey matter 

and in white matter. Multimodal fusion can examine joint information by combining multiple 

neuroimaging datasets to identify the covariant morphometric alterations in AD in greater detail. 

In the current study, we conducted a multimodal canonical correlation analysis and joint 

independent component analysis to identify the covariance patterns of the grey and white matter 

by fusing structural magnetic resonance imaging and diffusion tensor imaging data of 39 AD 

patients (23 males and 16 females, mean age: 74.91±8.13 years) and 41 normal controls (NCs) (20 

males and 21 females, mean age: 73.97±6.34 years) derived from the Alzheimer's Disease 

Neuroimaging Initiative database. The results revealed 25 joint independent components (ICs), of 

which three joint ICs exhibited strong links between the grey matter volume and the white matter 

fractional anisotropy and significant differences between the AD and NC group. The joint IC maps 

revealed that the simultaneous changes in the grey matter and FA values primarily involved the 

following areas: (1) the temporal lobe/hippocampus-cingulum, (2) the frontal/cingulate gyrus-

corpus callosum, and (3) the temporal/occipital/parietal lobe-corpus callosum/corona radiata. Our 

findings suggest that grey matter atrophy is associated with reduced white matter fiber integrity in 

AD and possibly expand the understanding of the neuropathological mechanisms in AD.
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Introduction

Alzheimer's disease (AD) is a common progressive neurodegenerative disease that is 

clinically characterized by cognitive impairments, such as declines in memory (Cummings 

et al., 1998, Dartigues, 2009). The prominent morphological alterations of AD occur both in 

grey matter and in white matter. Using structural magnetic resonance imaging (MRI), 

numerous studies have identified grey matter volume reductions that primarily occur in the 

medial temporal structures, the insular, the thalamus, cingulate areas, and the parietal and 

frontal areas (Baron et al., 2001, Frisoni et al., 2002, Zhang et al., 2009, Yang et al., 2012, 

Margarida Matos et al., 2013); for review, see (Frisoni et al., 2010, Yang et al., 2012). The 

decreases in white matter volume primarily occur in the corpus callosum, the cingulum, the 

parahippocampal, the uncinated fasciculus, the superior longitudinal fasciculus, the frontal 

lobe and the temporal lobe in AD patients compared to normal controls (NCs) (Salat et al., 

2009, Yoon et al., 2011, Li et al., 2012a).

Multiple diffusion tensor imaging (DTI) indices, such as fractional anisotropy (FA), radial 

diffusivity, axial diffusivity and mean diffusivity, can detect abnormalities in the white 

matter fibers in AD (Oishi et al., 2011, Shu et al., 2011, Bosch et al., 2012, Li et al., 2012b, 

Kincses et al., 2013). Among these indices, FA, which represents the degree of anisotropy of 

water diffusion, is one of the most important parameters that are commonly used to 

characterize the microstructural characteristics of white matter fibers in AD (Medina et al., 

2006, Zhang et al., 2009, Liu et al., 2011, Oishi et al., 2011). FA is sensitive to white matter 

integrity and most probably reflects changes in white matter integrity but could not always 

provide specifically such measure for all circumstances (Jones et al., 2013). Earlier DTI 

studies have applied univariate methods that focus on differences in the FA and found 

significant FA reductions that involved the majority of white matter tracts, including the 

body, genu and splenium of the corpus callosum, the cingulum, the superior longitudinal 

fasciculus and the corona radiata (Zhang et al., 2009, Oishi et al., 2011, Shu et al., 2011); for 

review, see (Chua et al., 2008, Oishi et al., 2011, Clerx et al., 2012, Amlien and Fjell, 2014).

Structural MRI can be used to examine changes in grey matter, and DTI can detect the 

diffusion characteristics that reflect the connectivity of white matter fibers. Most of the 
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previously published studies only utilized one imaging modality and used univariate 

approaches such as region of interest, voxel-based morphometry (VBM) or tract-based 

spatial statistics (TBSS) to analyze structural MRI or DTI data. More recently, a number of 

studies employed different imaging modalities but analyzed each imaging dataset separately 

to investigate the fundamental pathology of AD (Wang et al., 2013, Balachandar et al., 

2014, Racine et al., 2014). In contrast, multimodal fusion methods can extract simultaneous 

information by combining multiple neuroimaging datasets into one joint analysis to better 

identify the hidden covariant relationships among multiple morphological measurements in 

AD. To date, few studies have applied multimodal fusion approaches to explore the 

covariant morphological differences between AD and NCs (Guo et al., 2012, Kincses et al., 

2013, Teipel et al., 2014). However, these published studies only focused on the different 

indices of one modality. The combination of structural MRI and DTI can effectively provide 

information about the covariance patterns of grey matter volume and white matter FA that 

are associated with AD.

The combination of multimodal canonical correlation analysis (mCCA) and joint 

independent component analysis (jICA) is a user-independent data-driven approach that was 

proposed by Sui et al. (Sui et al., 2011). MCCA and jICA feature the advantages of both 

mCCA and jICA as well as flexible model association and source separation (Sui et al., 

2011). MCCA can be used to examine the inter-subject covariation across the two imaging 

modalities by providing a linear mixing model (Correa et al., 2008). JICA is an extension of 

ICA that fuses different neuroimaging datasets from the same subject and then decomposes 

the linear mixing signals into maximally joint independent components and examines the 

inter-subject covariances and the between-group differences (Calhoun et al., 2006). 

Different from the multi-modal techniques, multivariate but single-modal techniques such as 

scaled subprofile modeling (SSM) can only identify the uncorrelated sources based on single 

modal imaging data. MCCA and jICA have been validated and applied to identify the 

structural and functional abnormalities in the brain patterns of patients with schizophrenia 

(Sui et al., 2011, Sui et al., 2012b). The results showed that mCCA and jICA method is 

effective to find the function-structure correlation via the strong connection between joint 

components of the two modalities (Sui et al., 2011).

In the current study, we performed mCCA and jICA to identify the covariance patterns of 

the grey and white matter by fusing the structural MRI and DTI data of AD patients and 

NCs derived from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

Materials and Methods

Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 
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of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). Determination of 

sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California – San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is 

specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date 

information, see www.adni-info.org.

Subjects

All participants were obtained from the ADNI database. According to the ADNI protocols, 

AD was diagnosed based on the National Institute of Neurological and Communicative 

Disorders and Stroke/Alzheimer's Disease and Related Disorders Association (NINCDS/

ADRDA) criteria, and the severity of cognitive impairment was assessed based on the Mini-

Mental State Examination (MMSE) (Folstein et al., 1975) and Clinical Dementia Rating 

(CDR) (Morris, 1993) scores. To minimize the effect of the scanner systems, we added the 

constraint that the Structural MRI and DTI data should be acquired on 3T GE Medical 

Systems scanners. This study included 39 AD patients (23 males and 16 females, mean age: 

74.91±8.13 years, range: 60-90; mean MMSE: 22.87±2.32, range:18-27; CDR: 0.5 or 1) and 

41 NCs (20 males and 21 females, mean age: 73.97±6.34 years, range: 60-90; mean MMSE: 

29.07±0.96, range: 27-30; CDR: 0). The sexes and ages of the AD group and NC group 

were matched, and the sex ratio and age did not significantly differ (  = 0.836, p = 0.361 

and t(78) = 0.575, p = 0.567 , respectively); however, the MMSE scores of the AD group 

were significantly lower (t(78) = −15.768, p = 5.693e-026). The sample descriptions are 

presented in Table 1.

The ADNI study was approved by the Institutional Review Boards (IRBs) of each 

participating site and was conducted in accordance with Federal Regulations, the Internal 

Conference on Harmonization (ICH) and Good Clinical Practices (GCP). The study subjects 

provided written informed consent at the time of enrollment for imaging and completed 

questionnaires that were approved by each participating site's IRB.

Structural MRI data acquisition

All structural MRI scans were acquired with 3T GE Medical Systems scanners. The 

scanning parameters of T1-weighted 3D anatomical imaging data were defined as follows: 

pulse sequence=GR; matrix size = 256 × 256; voxel size = 1.0 × 1.0 mm2; flip angle = 11°; 

slice thickness= 1.2 mm; number of slices=196. The other parameters such as TE/TR 
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differed across scanning sites. Additionally, the images had undergone pre-processing 

including non-uniformity correction and gradwarp correction to avoid the possible 

differences among different scans according to the ADNI protocol (http://

www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml).

DTI data acquisition

For each subject, high-resolution DTI scans were acquired on 3T GE Medical Systems 

scanners. The scans were collected according to the standard ADNI MRI protocol. The 

following parameters were used: pulse sequence=EP/SE; matrix size = 256× 256; voxel size 

= 1.4 × 1.4 mm2; flip angle = 90°; slice thickness=2.7 mm; number of slices=59; gradient 

directions=41 (b=1000 s/mm2) and five acquisitions without diffusion weighting (b=0 

s/mm2). The other parameters such as TE/TR differed across scanning sites.

Structural MRI data preprocessing

The structural MRI data were preprocessed using the VBM8 Toolbox (http://dbm.neuro.uni-

jena.de/vbm8) in Statistical Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm). 

This process primarily consisted of segmentation and normalization. First, each subject's 

MRI data were segmented into grey matter, white matter and cerebrospinal fluid (CSF) 

images using adaptive maximum a posteriori (MAP) (Rajapakse et al., 1997) and partial 

volume estimations (PVE) (Tohka et al., 2004). Subsequently, the diffeomorphic anatomical 

registration using exponential lie algebra (DARTEL) (Ashburner, 2007) was applied to 

normalize the grey matter images and iteratively create the template. A single-constant 

velocity field was used in the DARTEL to generate the diffeomorphic and invertible 

deformations. The subjects’ grey matter images were registered to new templates for each 

iteration. Next, the normalized grey matter images were multiplied by the Jacobian 

determinants from the nonlinear deformations to preserve the absolute volume of grey 

matter in the subjects’ native spaces. Finally, all grey matter images were smoothed with an 

8-mm full-width at half-maximum (FWHM) Gaussian kernel and entered into the mCCA 

and jICA procedure.

DTI data preprocessing and tract-based spatial statistics

The DTI data were preprocessed in the FMRIB's Software Library (FSL) software (FSL 5.0, 

http://www.fmrib.ox.ac.uk/fsl). After correcting the eddy current and head motion with the 

affine registrations of each subject's diffusion-weighted images to the non-diffusion-

weighted images in the FMRIB's Diffusion Toolbox (FDT) 2.0, the non-brain structures 

were removed using the Brain Extraction Tool, and the FA maps were generated based on 

the diffusion tensors reconstructed with the DTIfit program. Next, the TBSS (Smith et al., 

2006, Smith et al., 2007) procedure was implemented on all subjects’ FA images to obtain 

the FA skeleton images. First, each subject's FA image was nonlinearly normalized to the 

MNI space. Second, the mean FA image was calculated and thinned to create the mean FA 

skeleton image (FA > 0.2), which represents the center of the white matter tract. Third, each 

subject's aligned FA image was projected onto the mean FA skeleton image by calculating 

the maximum FA values from the nearest tract center and filling the corresponding position 

in the skeleton. Finally, all subjects’ skeletonized FA images were calculated in the standard 
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1 × 1 × 1 mm3 MNI152 atlas space, smoothed with a 4-mm FWHM Gaussian kernel, and 

then entered into the mCCA and jICA procedure.

Multimodal CCA and joint ICA

The mCCA and jICA were performed for the multivariate analysis in the Fusion ICA 

toolbox (FIT v2.0c; http://icatb.sourceforge.net). Each subject's grey matter volume image 

and skeletonized FA image was separately converted to a one-dimensional row vector. The 

initial data matrix was formed by arraying 39 grey matter volume and FA vectors of AD and 

41 grey matter and FA vectors of NCs into an 80 row subjects by voxels matrix. A minimum 

description length (MDL) criterion was used to estimate the number of independent 

components for each dataset and dimension reduction was performed using the singular 

value decomposition (SVD) of the initial data matrix (Li et al., 2007). Second, mCCA was 

performed on the dimensionally reduced matrix to obtain the canonical variants matrix 

(D1/D2) and the associated components matrix (C1/C2) for each modality. The jICA based 

on the Infomax algorithm was then applied to the associated components matrix ([C1,C2]) 

to obtain the maximized joint independence components ([S1,S2]) (the joint source matrix 

(sources by voxels)) and the mixing coefficient matrix of the jICA (W−1) (subjects by 

sources). The final mixing coefficient matrixes were calculated by obtaining the product of 

the canonical variants matrix and the mixing coefficient matrix of the jICA (D1 × W−1 for 

grey matter (GM), D2 × W−1 for FA), which represent the source differences between the 

AD and NC group for each modality, respectively. Figure 1 shows the of flowchart mCCA 

and jICA procedure.

Statistical analyses

We performed a two-sample t-test on the column of the mixing coefficient matrixes of the 

jICA to compare the differences between AD/NC groups (P<0.001, Bonferroni correction) 

(Bland and Altman, 1995). The significant joint sources (the row of the joint source matrix) 

were converted to units of standard deviations (Z-scores) and then reshaped to two 3D brain 

maps (grey matter regions and white matter regions). We set the threshold at Z ≥3 to reflect 

the statistically significant independent components of the grey matter covariant patterns and 

a threshold of Z ≥2 to reflect the statistically significant independent components of the 

white matter covariant patterns.

To statistically characterize the sensitivity and specificity (Wu et al., 2013), a multivariate 

receiver operating characteristic (multiV-ROC) was applied to the combination of the two 

indices (i.e., the mixing coefficient matrixes) for each joint independent component (joint 

IC): First, a logistic regression was applied on the ICA weights of grey matter and white 

matter in one component to calculate a column of predicted value. Then, the predicted 

values entered the ROC procedure. Additionally, Pearson's correlation coefficients were 

calculated between the subjects’ MMSE scores and each column of the predicted values of 

the joint ICs.
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Results

Twenty-five joint ICs were extracted according to the MDL criterion, and a two-sample t-

test with Bonferroni correction on each column of these mixing coefficients revealed 

significant differences between the AD patients and the NCs in the jICA weights for three 

interpretable ICs. These three significant joint ICs also exhibited strong correlations (r>0.6) 

between grey matter volumes and white matter FA values.

Figs. 2, 3 and 4 illustrate the spatial maps of the joint covariant reductions of the grey matter 

volumes (left) and the FA values (right) in the AD patients compared to the NCs for 3 joint 

ICs. The middle panels show the corresponding scatter-plots of the mixing coefficient 

differences between the AD patients and the NCs. The positively-weighted coefficients in 

the joint IC spatial maps illustrate decreases in the grey matter volumes and FA values in the 

AD patients compared to the NCs.

For joint IC 1, the grey matter atrophy occurred mainly in the superior/middle/inferior 

temporal gyrus, parahippocampal area and the hippocampus, and the FA value generally 

decreased in the cingulum (hippocampus, Fig. 2). For joint IC 2, the grey matter volume 

reductions occurred in the superior/middle/inferior frontal gyri, whereas the FA reductions 

occurred mainly of the genu and body of the corpus callosum, cingulum (cingulate gyrus), 

external capsule and superior longitudinal fasciculus (Fig. 3). Regarding joint IC 3, the 

decreases in the grey matter volumes primarily involved the middle occipital gyrus, middle 

temporal gyrus, and precuneus, and the FA reductions predominantly included the body/

splenium of the corpus callosum (Fig. 4).

Table 2 shows the locations of the covariant decreases in the grey matter volume and white 

matter FA in the AD patients compared to the NCs for joint ICs 1 to 3. We used the AAL 

mask in the WFU_PickAtlas toolbox for grey matter regions and the ICBM DTI-81 Atlas in 

the FSL toolbox for white matter regions when we obtained the MNI coordinates and cluster 

size. Table 3 shows the correlation coefficients between the grey matter volumes and white 

matter FAs and the multiV-ROC results for the mixing coefficients of the two modalities for 

each joint IC. Pearson's correlation coefficients between the subjects’ MMSE scores and the 

predicted values of the joint ICs were −0.746 (p=2.01E-15), −0.632 (p=3.10E-10) and 

−0.651 (p=6.54E-11), respectively for joint IC 1, 2 and 3.

Discussion

In the current study, we performed mCCA and jICA, an effective multimodal fusion 

approach, on structural MRI and DTI data from both AD patients and NCs to investigate the 

shared alterations in the grey and white matter associated with AD. The priori hypothesis 

about what regions (based on the existing literatures) are involved in AD was also 

considered in the proper selection of the relevant ICs. We found that three significant joint 

ICs revealed atrophy in the grey matter volumes and decreases in the white matter FA values 

in the AD patients compared to the NCs. Additionally, the multiV-ROC analysis revealed 

the high sensitivity and specificity of the discrimination.
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For joint IC 1, the reduction in grey matter volume occurred mainly in the temporal lobe, 

particularly the hippocampus and parahippocampal gyrus, which generally agrees with 

previous reports (Frisoni et al., 2002, Guo et al., 2010, Guo et al., 2012). The majority of the 

FA decreases were located in the cingulum (hippocampus), which coincides with the 

findings of most DTI studies of AD (Liu et al., 2011, Guo et al., 2012). Killiany et al. found 

that AD patients with only mild symptoms show significant atrophy in the temporal lobe 

(Killiany et al., 1993) including brain areas that are essential to memory function (Dickerson 

et al., 2004). Stoub et al. also found that grey matter volume atrophy in the hippocampus and 

white matter volume atrophy in the parahippocampal gyrus lead to memory declines in 

people with mild cognitive impairment (MCI) (Stoub et al., 2006), which implies that grey 

matter volume atrophy in the hippocampus could be considered one of the most valuable 

biomarkers for the diagnosis of AD (Stoub et al., 2006, Guo et al., 2012). The white matter 

fibers in the cingulum connect the prefrontal lobes to the posterior cortices, including the 

hippocampal formation (Bürgel et al., 2006). Villain et al. also found that hippocampal 

atrophy is related to the cingulum bundle (Villain et al., 2008). These findings suggest that 

the reduced fiber integrity of the white matter in the cingulum (hippocampus) may also 

affect the grey matter reduction observed in joint IC 1, particularly in the hippocampus, and 

thus lead to memory impairment in AD.

Regarding joint IC 2, the majority of the reductions in the grey matter volume were found in 

the frontal lobe and the anterior cingulate gyrus, which agrees with the findings of previous 

studies (Frisoni et al., 2002, Hämäläinen et al., 2007, Guo et al., 2010, Guo et al., 2012); 

however, the reduction in FA primarily involved the genu and body of the corpus callosum 

(Zhang et al., 2009, Guo et al., 2012). The regions found in joint IC 2 primarily agree with a 

report by Guo et al.; who detected grey/white matter volume differences by performing joint 

ICA to construct covariant networks. They found grey matter volume reductions in the 

frontal lobe, cingulate gyrus, hippocampus and parahippocampal gyrus as well as white 

matter volume covariant decreases in the related superior longitudinal fasciculus, corpus 

callosum and corona radiata (Guo et al., 2012). The genu of the corpus callosum has been 

found to connect the left and right prefrontal cortical regions (van den Heuvel et al., 2009), 

and the grey matter reductions observed in the frontal lobes of AD patients primarily occur 

in the anterior frontal lobe (Whitwell et al., 2007). Moreover, the corpus callosum, which 

connects the hemispheres, has been reported to play a vital role in higher order cognitive 

functions (Schulte and Müller-Oehring, 2010, Li et al., 2012a), and the majority of the 

corpus callosum exhibited reduced integrity of white matter regions in the current study. The 

above reports suggest that the weakened integrity of the white matter fibers in the corpus 

callosum might be associated with the atrophy of the grey matter regions and thus might 

influence functional networks and affect the cognitive abilities of AD patients.

Regarding joint IC 3, the reductions in the grey matter volumes primarily involved the 

occipital/temporal/parietal/frontal lobes, the precuneus, the angular and posterior cingulate 

gyri; these results are similar to those reported in previous studies (Guo et al., 2010, Guo et 

al., 2012). The FA reductions predominantly involved the body/splenium of the corpus 

callosum and the corona radiate, which agrees with previously published studies of white 

matter in AD (Liu et al., 2011, Oishi et al., 2011, Li et al., 2012a, Kincses et al., 2013). 

Chaim et al. reported that the atrophy of the splenium of the corpus callosum can reflect 
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neuronal loss in the parieto-temporal neocortical regions (Chaim et al., 2007), which 

indicates that abnormal white matter fibers in the corpus callosum might have influenced the 

grey matter in joint IC 3. More importantly, most of the grey matter regions that were 

involved in joint IC 3 are associated with the default mode network (DMN), and the white 

matter fibers in the corpus callosum and corona radiate are essential for connecting the 

regions of the DMN (Luo et al., 2012). Additionally, Rombouts et al. found that altered 

activity in the DMN represents a potential early biomarker of AD pathology (Rombouts et 

al., 2005), which suggests that the structural covariance patterns of joint IC 3 might be 

associated with the DMN in AD.

Joint IC 1 had the significant statistical power (p=4.46e-12 for the grey matter volumes and 

p=1.55e-10 for the white matter FA values) in the between-group comparisons. Moreover, 

the grey matter volume and FA value in joint IC 1 were the most relevant (r=0.708) among 

the three joint components. The grey matter volume and white matter FA value also 

exhibited greater relevance for joint IC 2 (r=0.682) and joint IC 3 (r=0.636). The multiV-

ROC analysis revealed discriminabilities with 89.7% sensitivity and 90.2% specificity for 

joint IC 1, 87.2% sensitivity and 75.6% specificity for joint IC 2 and 74.4% sensitivity and 

90.2% specificity for joint IC 3. Multivariate jICA is available to examine the correlation of 

the neuropsychological scores or other scores and the expression of joint ICs. The subjects’ 

MMSE scores and the predicted values of the joint ICs were significantly correlated for 

three joint ICs. Each joint IC might reflect a different aspect of the pathological 

abnormalities in AD, and these joint ICs might serve as potential biomarkers for the 

prediction of AD pathology.

We found that four significant ones out of the twenty-five joint ICs with Bonferroni multiple 

comparisons for two-sample t-test. We noted the existence of additional one significant joint 

IC with scattered spatial distributions primarily involving the periventricular regions. Like 

many multivariate techniques, the proper selection of IC components is always a problem in 

the ICA-related literatures (Xu et al., 2009, Caprihan et al., 2011). To examine the 

consistency and stability of three significant joint sources reported in our study, we 

evaluated the results in different number of ICs (the number of ICs is more or less than 25 

including 21, 23, 27 and 29) and confirmed that these three joint sources are significant and 

consistently exist in varying IC numbers.

Other multivariate techniques investigating for the covariant patterns include Bayesian 

network (BN), structural equation modelling (SEM), SSM and partial least squares (PLS). 

The first three methods can only analyze single modal imaging data. BN and SEM are for 

effective connectivity in the fMRI literature. SSM is based on a modified principal 

component analysis (PCA). PLS has the feature of PCA and regression analysis and form a 

latent variable that maximizes the covariance among multi-modal imaging data (McIntosh et 

al., 2004). The sources identified by SSM or PLS are uncorrelated, but those identified by 

ICA are independent. Moreover, jICA, as an extension of ICA, can combine two 

neuroimaging datasets to find joint sources. Regarding the methodology we adopted herein, 

the combination of mCCA and jICA is an effective multimodal fusion method that allowed 

us to detect the source components that improved the identification of the covariant patterns 

of the brain. Sui et al. applied this method to fuse fMRI and DTI data in order to 
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discriminate the different morphological abnormalities of the brain patterns of patients with 

schizophrenia and bipolar disorder (Sui et al., 2011). Additionally, jICA assumes that all 

modalities have the common mixing matrix. CCA can maximize the correlation in two 

datasets. Combining mCCA and jICA better estimates the source and mixing matrices to 

obtain higher and even weaker correlation within joint sources than does mCCA or jICA 

alone (Sui et al., 2012a). Sui et al. also reported that this method is flexible and can be 

applied to three or more imaging modalities by extending the multi-modal CCA to a multi-

set CCA (Sui et al., 2012b).

In the current study, all data were from ADNI. ADNI has already performed some MRI 

image corrections to make quality assurance. We performed two-sample t-test to examine 

between-group differences in head motion parameters for DTI data. The results showed that 

most head motion measures did not significantly differ between the AD group and NC group 

with multiple comparison corrections (All Ps ≥ 0.024). The spatial preprocessing steps of 

structural MRI and DTI reduced the positional difference between individual image and the 

template, and the effect of head motion to a lesser extent in this study. The effect of head 

motion was investigated in several univariate studies (Yendiki et al., 2014, Reuter et al., 

2015), and such potential effect should also be considered in the future multivariate study. In 

addition, we considered data from two modalities, only focusing on structural or 

morphological differences in AD. In fact, functional MRI can provide useful information for 

our understanding of the neuropathological mechanisms of AD. With the use of multi-set 

CCA (Sui et al., 2012b) in place of mCCA, it becomes possible to investigate simultaneous 

differences in grey matter volumes, white matter integrity and functional connectivity for 

more comprehensive grasp of multi-aspects of AD. Lastly, we are interested in applying the 

same technique to mild cognitive impairment (MCI), a preclinical prior to the onset of AD 

to investigate the predictability for the progression to AD with possible increased statistical 

power.

In summary, we performed mCCA and jICA to identify the covariances of grey matter and 

white matter that were associated with AD. The mCCA and jICA method for creating grey 

matter volume maps and FA value maps effectively detects the underlying grey matter 

atrophies that are associated with white matter connectivity in the corresponding brain areas. 

The results of this study predominantly correspond to those of earlier studies, which suggest 

that our findings are reliable. These findings could elucidate the neuropathological 

mechanisms of AD from a covariance patterns perspective.
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Highlight

1. mCCA and jICA identified covariance patterns of grey and white matter 

changes in AD.

2. 3/25 joint independent components displayed covariant changes in AD.

3. Simultaneous changes significantly distinguished the AD/NC group 

membership.
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Figure 1. 
The flowchart of mCCA and jICA procedures.
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Figure 2. 
Significance maps illustrating the spatial maps of the joint covariant reductions in grey 

matter volume (left) and FA value (right) in the AD patients compared to the NCs for joint 

IC 1. The color bar represents the Z-scores. The middle panels show the corresponding 

scatter-plots of the mixing coefficient differences between the AD patients and the NCs.
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Figure 3. 
Significance maps illustrating the spatial maps of the joint covariant reductions in grey 

matter volume (left) and FA value (right) in the AD patients compared to the NCs for joint 

IC 2. The color bar represents the Z-scores. The middle panels show the corresponding 

scatter-plots of the mixing coefficient differences between the AD patients and the NCs.
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Figure 4. 
Significance maps illustrating the spatial maps of the joint covariant reductions in grey 

matter volume (left) and FA value (right) in the AD patients compared to the NCs for joint 

IC 3. The color bar represents the Z-scores. The middle panels show the corresponding 

scatter-plots of the mixing coefficient differences between the AD patients and the NCs.
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Table 1

The demographic information of the subjects

Group AD NC

Number 39 41

Gender (F/M) 23/16 20/21

age 74.91 ± 8.13 73.97 ± 6.34

age range (60-90) (60-90)

MMSE 22.87 ± 2.32 29.07 ± 0.96

MMSE range (18-27) (27-30)

CDR 0.5 or 1 0

*AD=Alzheimer's Disease, NC=Normal Control, MMSE= Mini-Mental State Examination, CDR=Clinical Dementia Rating

Neuroscience. Author manuscript; available in PMC 2016 August 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ouyang et al. Page 21

Table 2

Locations of the covariant decreases in grey matter volume and FA value in the AD patients compared to the 

NCs for joint ICs 1-3.

Brain regions Peak coordinates MNI (X,Y,Z) Z Cluster size (mm3) Overlap ratio (%)

Joint IC 1, Grey matter (volume)

L Middle temporal gyrus −43.5 12 −36 12.71 17,814 39.1%

R Middle temporal gyrus 36 9 −42 11.30 11,485 25.8%

L Inferior temporal gyrus −43.5 10.5 −37.5 12.87 11,158 12.8%

R Inferior temporal gyrus 36 7.5 −42 11.62 9,163 9.3%

L Superior temporal gyrus −27 10.5 −34.5 9.56 5,738 16.3%

R Superior temporal gyrus 28.5 12 −34.5 8.45 3,584 10.0%

L Parahippocampal gyrus −27 −3 −36 8.07 2,629 10.1%

R Parahippocampal gyrus 24 3 −30 7.52 3,949 13.1%

L Hippocampus −24 −6 −22.5 8.63 2,079 8.3%

R Hippocampus 24 −1.5 −24 8.74 1,492 5.9%

L Amygdala −24 −4.5 −24 8.48 1,306 23.2%

R Amygdala 24 −3 −22.5 8.70 1,239 18.8%

Joint IC 1, white matter (FA)

Cingulum (hippocampus) −26 −22 −25 4.25 396 16.6%

L External capsule −25 17 8 2.68 169 3.0%

L Anterior limb of internal capsule −22 17 11 2.76 159 5.3%

L Anterior corona radiata −24 18 10 2.70 80 1.2%

Joint IC 2, grey matter (volume)

L Middle frontal gyrus −25.5 49.5 7.5 7.26 10,291 14.7%

R Middle frontal gyrus 28.5 51 6 5.98 11,927 24.5%

L Superior frontal gyrus −24 51 4.5 6.68 5,417 15.0%

R Superior frontal gyrus 7.5 48 −24 6.22 6,574 3.0%

L Inferior frontal gyrus −30 39 −15 6.38 3,216 7.0%

L Anterior cingulate gyrus −7.5 48 3 7.03 3,952 10.6%

R Anterior cingulate gyrus 7.5 33 21 5.44 4,823 13.3%

L Rectus 0 37.5 −18 6.17 3,173 13.5%

R Rectus 6 46.5 −24 6.37 3,203 15.5%

Joint IC 2, white matter (FA)

Body of corpus callosum −7 17 19 4.76 1,891 13.8%

Genu of corpus callosum −7 20 19 4.56 529 6.0%

Cingulum (cingulated gyrus) −9 18 25 3.20 226 4.4%

R External capsule 32 8 −9 2.84 123 2.2%

Superior longitudinal fasciculus −34 −43 31 2.79 58 0.4%

Joint IC 3, grey matter (volume)

L Middle occipital gyrus −36 −78 39 10.39 10,301 39.3%
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Brain regions Peak coordinates MNI (X,Y,Z) Z Cluster size (mm3) Overlap ratio (%)

R Middle occipital gyrus 40.5 −73.5 39 11.62 8,188 48.9%

L Middle temporal gyrus −43.5 −66 18 9.32 9,005 22.7%

R Middle temporal gyrus 45 −69 22.5 8.85 5,130 14.6%

L Angular −40.5 −75 37.5 9.92 7,641 80.7%

R Angular 39 −70.5 43.5 12.34 7,911 56.0%

L Precuneus 1.5 −55.5 33 6.62 5,437 19.2%

R Precuneus 6 −52.5 36 7.43 7,155 27.6%

L Inferior parietal gyrus −34.5 −78 40.5 10.15 3,942 20.2%

L Superior parietal gyrus −36 −70.5 49.5 7.51 2,241 13.6%

R Middle frontal gyrus 42 10.5 46.5 6.22 2,217 5.4%

L Post cingulate gyrus −6 −49.5 33 6.29 1,472 39.4%

Joint IC 3, white matter (FA)

Body of corpus callosum −6 −20 26 4.10 1,403 10.2%

Superior corona radiata 17 13 31 3.19 641 4.3%

Posterior thalamic radiation 28 −55 16 2.94 401 5.0%

Superior longitudinal fasciculus −40 −42 12 4.27 387 2.9%

Posterior corona radiata −27 −30 30 3.46 189 2.5%

R Anterior corona radiata 17 16 29 3.00 104 1.5%

Splenium of corpus callosum 27 −55 16 2.94 94 0.7%

*L: left; R: right; MNI: Montreal Neurological Institute; Overlap ratio: the number of voxels in ROI of Atlas divided by that of suprathreshold 
voxels in the corresponding brain regions of significance maps.
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Table 3

The correlation coefficients between the grey matter volumes and white matter FA values and the indices of 

the multivariate ROC analysis from the mixing coefficients of the two modalities for each joint IC.

Joint IC p-value
correlation r(p)

Multivariate ROC

GM FA Area Sensitivity Specificity

Joint IC 1 4.46e-12 1.55e-10 0.708(2.05e-13) 0.928 89.7% 90.2%

Joint IC 2 3.41e-06 4.05e-08 0.682(3.18e-12) 0.841 87.2% 75.6%

Joint IC 3 8.75e-06 2.78e-09 0.636(2.31e-10) 0.862 74.4% 90.2%
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